
Course Structure and Curriculum

Master of Technology in Medical Devices

(Effective from 2025-2026)

Biomedical Engineering Department National Institute of Technology Raipur- 492010

VISION AND MISSION OF THE INSTITUTE

VISION

To be a leader in technical and management education in India and to establish a unique identity for the development of high-quality human and knowledge resources in diverse areas of technology and management.

MISSION

To mould young students into rational thinking engineers/individuals who are motivated by a passion for professional excellence driven by human values and proactively engaged in betterment of society

VISION AND MISSION OF THE DEPARTMENT

VISION

To provide society with world class competitive professionals in Biomedical Engineering by making the department as the best through its faculty and graduates, which is a driving force in creating engineering knowledge and novel Biomedical Technology that improve the human condition through advancement of healthcare and Biomedical Sciences.

MISSION

- To educate students to understand the human body as an integrated system through quantitative engineering analysis.
- To use the above understanding to design better therapeutic strategies, devices, and diagnostics.
- To serve society by conducting research that develops quantitative linkages across scales in the human body and uses that development to build new tools to improve human health.
- To serve our wider constituencies by offering our expertise to other health-related professionals, industries, and state communities

Program Educational Objectives (PEOs)

The *Program Educational Objectives* (PEOs) embody the expected accomplishments of students, who successfully graduate from the program. The PEOs for the proposed program are as follows.

PEO-1	Apply technical knowledge and skills as Biomedical Engineers to provide the solutions for the industries and government organizations pertaining to medical devices sectors
PEO-2	Utilize effective communication, team, and project management skills to work productively within their professions and communities.
PEO-3	Conduct themselves in a responsible, professional and ethical manner.
PEO-4	Inculcate an attitude for lifelong learning process

Mapping of Program Educational Objectives (PEOs) to Mission Statements (MS) (Program Articulation Matrix)

Mission Statement s	PEO-1	PEO-2	PEO-3	PEO-4
MS-1	3	2	3	3
MS-2	2	3	2	3
MS-3	2	3	2	3
MS-4	3	2	2	3

1-Slight; 2-Moderate; 3-Substantial

Program Outcomes (POs):

The following *POs* attainment would help the successful students passing through the program to achieve the aforementioned PEOs.

PO1: Possess knowledge of modern technological concepts, conduct in-depth studies and experiments and solve practical problems related to Medical Devices.

PO2: Work on multi-disciplinary projects to enhance skills, make effective oral presentations and prepare technical documents effectively.

PO3: Develop professional and ethical attitude and become socially responsible citizens.

PO4: Ability to understand global issues and conduct independent research in the emerging areas related to Medical Devices or interdisciplinary areas.

Mapping of Graduate Attributes (GAs) to Program E	Educational Objectives (PEOs)
---	-------------------------------

PE Os	PO1	PO2	PO3	PO4
PEO -1	\checkmark	\checkmark	\checkmark	\checkmark
PEO -2	\checkmark	\checkmark	\checkmark	\checkmark
PEO -3	\checkmark	\checkmark		
PEO -4		\checkmark		\checkmark

Course Outcomes (COs)

Course outcomes are narrower statements that describe what students are expected to know and are able to do at the end of each course. These relate the skills, knowledge and behavior that students acquire in their progress through the course.

Four Cos needs to be identified for each of the course and to be mapped with POs

Program Specific Outcomes (PSOs)

PSO- 01	Graduating students will be able to apply fundamental knowledge of mathematics, science and biomedical engineering to investigate, identify, formulate and design complex problems in the engineering and computational medical devices and allied multidisciplinary areas ensuring the use of latest technological developments in the section of critical care medical equipment and in-vitro diagnostic medical equipment, while creating sensor fabrication and regenerative medicine fabrication facilities.
PSO- 02	Graduating students will be able to develop and apply the appropriate techniques and modern engineering tools to solve complex real-life problems by working with a multidisciplinary team and inculcate skills for life-long and self-learning.

Steps followed to assess POs through COs

Following steps are being followed to assess POs through CO's:

Step 1: Relationships between each course's outcomes (CO's) and PO's have been established. Step 2: Quantification of relational values between PO's & CO's and their corresponding weights using the scale from 1 (Least relation) to 3 (Very strong relation).

Step 3: Attainment of course outcome (CO's).

Step 4: Attainment of COs for one semester through appropriate rubrics

Based on the attainment of CO for the particular course, the attainments of POs for the same are calculated as mentioned below:

The PO attainment for the subjects is calculated by multiplying the normalized values of each of the PO with the attained CO of the course. The same procedure is carried out for all the courses (Theory courses (T), Laboratory courses (L) and Project (P) etc.) of the M. Tech Medical Devices.

Engineering PG program.

POi Attainment= (sum of Individual POi attainment/ sum of Individual Normalized POi) The overall attainment of the POs for a session is calculated based on the formula: Overall PO Attainment (PO) = $0.5 \times \text{Theory}+0.1 \times \text{Lab}+0.4 \times \text{Project}$

Using the above formula overall PO attainment for M.Tech. Medical Devices will be evaluated. Overall attainment will be reviewed to conclude that the assessment tools are systematically in place.

CO/PO	PO1	PO2	PO3	PO4
CO1	\checkmark	\checkmark	\checkmark	
CO2	\checkmark	\checkmark		
CO3		\checkmark		
CO4		\checkmark		

Preamble

Biomedical engineering is an interdisciplinary department. Its focus is on creating systems that experimentally and computationally analyze any medical engineering system, uses modern tools such as digital twins, integrative biosensors, AI/ML, Data Science, Additive Manufacturing, biomimetics, smart bio-materials, and information to support medical fraternity with engineering solutions. One of the Institute's core departments, the Department of Biomedical Engineering, was founded in 2003. At the moment, it provides UG, and PhD courses. The Department is continuously improving its facilities in the fields of healthcare integrated AI-ML, Medical Device Design Engineering, Regenerative medicine and biomaterial engineering, biophysics, and biosensor engineering. The Biomedical Engineering Department at NIT Raipur boasts a highly qualified and knowledgeable staff. The Department of Biomedical Engineering not only has strength in the traditional areas of AI-ML in healthcare, Medical Devices, and Regenerative materials and mechanics, use of modern computational tools, but it also supports a number of other disciplines, including Material Science, Computational techniques, and Chemical Sciences.

Details of Master of Technology in Medical Devices

The Department of Biomedical Engineering at the National Institute of Technology (NIT), Raipur is pleased to announce the launch of a comprehensive Master of Technology (M. Tech) program in Medical Devices. This program is being introduced with the goal of advancing knowledge and encouraging innovation in the field of medical devices. Students will be provided with a comprehensive understanding of theoretical underpinnings, practical applications, and cutting-edge innovations in the area through the completion of this program, which is designed to meet the requirements of industry 4.0 and the present needs of the industry.

Course Structure and Detailed Curriculum

Semester wise Credit Distribution							
Semester	Ι	II	III	IV	Total		
Credits	20	20	20	20	80		

M.Tech (Medical Devices)

SEMESTER I

CODE	SUBJECT		L	Т	Р	С
	Pro	gram Core (03)	3	1	0	3
BM311101BM	Regulatory and Quali and IVD Instruments	ty Compliance of Critical care	3	1	0	3
<u>BM311102BM</u>	Critical Care and IVI) Instrumentation	3	1	0	3
<u>BM311103BM</u>	Advanced fabrication	processes in medical devices	3	1	0	3
	2 Elective	s are offered in Sem I	3	1	0	3
BM311201BM BM311202BM BM311203BM	List of Elective -I Sem I	2 Physiological control system in medical device				
BM311204BM BM311205BM BM311206BM	List of Elective -II Sem I	6				
<u>BM311401BM</u>	Medical Device Lab medical equipment	Medical Device Lab 1: Quality testing procedure for medical equipment		0	3	2
<u>BM311402BM</u>	Medical Device Lab 2: Fabrication Methods of Medical Device		0	0	3	2
BM311403BM	Seminar and Report Writing / Industrial Training		0	0	1	1
Total Credit				20)	

SEMESTER II

CODE	SUBJECT		Т	Р	С
	Program Core (03)				
<u>BM312101BM</u>	Basics of Biosensors and Bioelectronics	3	1	0	3
<u>BM312102BM</u>	I312102BM Tissue Engineering and Device Interaction		1	0	3

BM312103BM	IoT and AI-ML in medical devices		3	1	0	3
	2 Electives	2 Electives are offered in Sem II			0	3
BM312201BM BM312202BM	List of Elective-III Sem II	2. Design Fabrication and Testing of Medical Dev				es and
BM312203BM BM312204BM BM312205BM	List of Elective-IV Sem II	2 Sterilization Techniques for Medical Devices				
BM312401BM	Medical Device Lab	Eliosensor and Bioelectronics	0	0	3	2
BM312402BM	Medical Device Lab : Interaction	0	0	3	2	
<u>BM312403BM</u>	Seminar and Report Writing / Industrial Training		0	0	3	1
		Total Credits				20

SEMESTER III

CODE	SU	ВЈЕСТ	L	Т	Р	С
	Hands on Training (ar	Hands on Training (any four course to be taken)			8	8
BM313301BM BM313302BM BM313303BM BM313303BM BM313304BM BM313305BM BM313306BM BM313307BM BM313308BM	Seminar and Report Writing (Technical White Paper) / Hands on Training	ECG and Bedside Monitor Sy Defibrillator and Heart Lung Ventilator and Anesthesia Ma Hemodialyzer and Endoscope Single and Multi-Channel Se Analyzer Full Auto Biochemistry Anal Gas Analyzer ELISA and PCR Instrument Blood Cell Count Analyzer a Instrument	Machine achine e mi auto t yzer and	piochemi Arterial	Blood	
BM313501BM	Minor M. Tech Thesis	1	0	0	24	12
Total Credits					20	

SEMESTER IV

CODE	SUBJECT	L	Т	Р	С
<u>BM314501B</u>	M.Tech Project	0	0	40	20
Total Credits					20

Semester wise learning outcome:

Semester I:

First semester the course covers practical applications of regulatory and quality compliances of medical devices, helping students comprehend and solve complex engineering challenges in designing. In the course of the foundation of human biology for medical devices, students will be able to develop critical thinking and correlation of medical devices while integrating them as extracorporeal systems / parts of the human system. Mathematical models shall be extensively used in this semester for developing models of medical devices parametric characterization, as well as for modeling biological control systems for integrating and synchronizing with medical devices. Advanced fabrication processes shall also be elaborated for developing different types of biosensors for integrating with medical devices. Electives offered in this semester are going to make the foundation of either critical care instrumentation, or fluidics instrumentations in medical devices. Three hands-on labs will cover mathematical modeling of medical devices, quality testing procedures for medical devices, and illustration of fabrication processes of medical devices. This course is crucial to the program since it develops students' professional and interpersonal skills. This course integrates mathematical topics with computational tools to prepare for medical devices expertise.

Semester II:

Biosensor and bioelectronics of medical devices will be taught this semester. Medical Devices M. Tech disciplines are chosen for their interdisciplinary teaching and field relevance. Courses in tissue engineering and device interaction, bioelectricity shall be taught, while emphasizing the integration of medical devices with the human body. In this semester, IoT and AI-ML integration to medical devices shall also be elaborated. It will also be associated with an integrated laboratory session. Data-driven computational simulations, optimization, and decision-making are growing. Electives include electrical safety of patients and diagnostic and IVD devices. Three Engineering Labs: biosensor and bioelectronics lab, tissue engineering and device interaction lab, and AI and ML in medical device lab. This semester shall also consist of industrial training at the end of the semester. This internship lets students correlate their coursework with industrial scenarios, and shall innovate them to draw better engineering solutions to medical device designing. Fundamentals, specialization, and cutting-edge technology make the Medical Device M. Tech course noteworthy. Industrial needs are satisfied by teaching regulatory affairs, quality controls, and device design of medical devices widely and allowing students to specialize in electives and labs.

Semester III:

A variety of specialist electives hands on training sessions are available to students, such as training on ECG and Bedside monitor machine, Defibrillator and heart lung machine, ventilator and anesthesia machine, hemodialyzer and endoscope machine, single and multi-channel semi -auto and full auto biochemistry analyzer machine, arterial blood gas analyzer machine, ELISA and PCR machine, and Blood cell count analyzer machine. Students can gain practical experience in machine handling, troubleshooting, components observation and understanding, and analysis of the results / performance of characteristic curves of various parameters derived from the machine with respect to variation in testing point voltages and currents; and correlated to other fluidic and optical parameters. Students shall complete an extensive project in the last semester, where they put their medical device designing knowledge to use by solving real-world problems.

Semester IV:

During the last semester, students get the opportunity to showcase their expertise in medical devices by doing a comprehensive and original research project. This Master of Technology program in Medical Devices is designed to give students a well-rounded education in the subject by covering both the fundamentals and the most recent developments in the area. We strive to graduate students who can make significant contributions to Medical Device innovation through innovative research, technological advancements, and practical applications in industry.

Feasibility and Applicability:

The M. Tech in Medical Devices uniquely emphasizes practical applications, providing hands-on experience in solving complex engineering challenges related to medical device design. Its applicability is strengthened by seamlessly integrating device design principles, aligning with contemporary trends, and employing an interdisciplinary approach that addresses a broad range of engineering problems. The program's industry relevance is further highlighted by its focus on device designing integration, offering specialized electives and practical components with live medical devices from the sector of therapeutic and IVD medical devices, ensuring graduates are well-equipped for real-world applications.

Practical Applications: The course covers practical applications of medical device regulatory affairs, providing students with hands-on experience in solving complex engineering challenges.

AI Integration: Incorporation of AI principles, including probability and statistics, enhances the course's feasibility by aligning it with contemporary technology trends.

Interdisciplinary Approach: The interdisciplinary teaching approach, combining computational mechanics with AI and ML, makes the course feasible for addressing diverse engineering problems.

Sensor development: The integration of AI and ML in computational sensor development addresses real-world engineering problems creatively, preparing students for data-driven simulations, optimization, and decision-making.

Specialized Electives: Electives from the domain of critical care devices and IVD devices shall enhance applicability by allowing students to specialize in areas aligned with industry demands.

Hands on Training Sessions: The inclusion of courses on hands-on training sessions of medical devices at factory setup shall build confidence among students, as well as make them comfortable to recruit medical devices to work on real time medical device designing problems.

Job Perspectives:

Graduates with an M. Tech in Medical Devices are well-positioned for diverse and high-demand roles across industries. In sectors like data analytics, pharmaceutics, IVD associations, Medical Device manufacturing associations, device quality control and regulatory issues, BIS in medical devices, Patent officers in medical devices, they can contribute to optimizing designs, analyzing results, evolving modification in innovative designs, and utilizing AI for data-driven decision-making. Specialized expertise in areas such as biofluid dynamics and flows modeling opens avenues in healthcare sectors. Additionally, proficiency in high-performance computing gained during the program equips graduates for roles in research institutions and technology-driven companies. The unique blend of medical device designing and AI skills prepares them for careers at the forefront of technological advancements, addressing complex challenges in specific industries with a strong foundation in both theory and practical application.

Versatility: Graduates can explore various career paths due to the program's versatility, covering areas such as optimization engineering, biosensor development, device development, and fluidics in IVD. **Industry Relevance:** Addressing industrial needs through broad coverage of medical devices and specialization in electives ensures graduates are equipped with skills relevant to industry demands. **Project-Based Learning:** Practical experience gained through labs, minor projects, and extensive

projects in each semester enhances graduates' readiness for industry roles.

Innovation and Research: The focus on a comprehensive and original research project in the final semester prepares graduates to contribute to innovative advancements in medical devices, fostering research-oriented job opportunities.

Overall, the M. Tech in Medical Devices course appears feasible, applicable to real-world engineering challenges, and promising in terms of job perspectives, aligning well with industry needs and technological advancements.

Admission Criterion

The admission criterion for the course will be identical to that of the present PG program being conducted at the Department and will be in accordance with the rules of the Institute and CCMT. The eligibility is as follows:

B. Tech in Biomedical Engineering and related branches, Mechanical Engineering, Chemical Engineering, Material Science Engineering, Electrical Engineering, Electronics and Telecommunication Engineering, Bachelor of Pharmacy, MBBS, BDS and related GATE examination qualifications will be eligible for admission.

Number of seats

<u>5ca</u>	Open	OBC	SC	ST	Total	Sponsored	Grand Total
	8	5	3	2	18	6	24

Resources

Manpower:

Presently the Department has a faculty strength of 8 regular faculties. All these faculties belong to the proposed stream and in future the strength is going to be increased.

Infrastructure, Labs and Equipment:

The lab requisition for the proposed course is evaluated on the basis of the scheme offered above. Requisite number of **classrooms** is available with the department. In addition to that, infrastructural support is also committed by the Ministry of Pharmaceuticals and Fertilizers.

	Course Code: BM311101BM	Subject Name: Regulatory and Quality Compliance of Critical care and IVD Instruments	Credits (L-T-P-	-Cr) : 3-1-0-4
Pre-re	quisites: NIL			
	Course Outcome			
S.No.	Outcomes	PO Level	Description	
CO1	Analyze the regulatory environm	nent for medical devices in India and globally	<i>i</i> .	
CO2	Apply knowledge of the Inc classification and registration of	lian Medical Device Rules (2017) for medical devices.	the	
CO3	Evaluate the risk managemen of medical devices.	ing		
CO4	Apply ISO 13485 and GMP guid devices.	lelines in the design and manufacture of medi	ical	

Apply the steps in the regulatory approval process for medical devices in India

Evaluate clinical trial protocols for medical device approval and conformity

Evaluate the ethical, legal, and social challenges in the regulation of medical

Create strategies to address emerging compliance challenges in the medical

		Articulation Matrix: (CO-PO-PSO Mapping)											
СО	P O 1	P O 2	P O 3	Р О 4	PSO 1	PSO2							
CO1	2	1	-	1	3	3							
CO2	3	3	2	2	3	3							
CO3	3	3	3	3	3	3							
CO4	2	3	2	1	3	3							
CO5	2	1	-	1	3	3							
CO6	3	3	2	2	3	3							
CO7	3	3	3	3	3	3							
CO8	2	3	2	1	3	3							
Unit	Syl	labus											

CO5

CO6

CO7

CO8

assessment.

device industry.

devices.

Hours

Unit 1	Introduction to Medica Topics Covered:	al Device	Regulations	and	Standards	10		
	 Introduction to Medical De Regulatory Bodies in India: Pharmaceutical Pricing Auth Overview of Indian Medica 	CDSCO (Central I ority (NPPA), and	Orugs Standard Cont their roles.	trol Organiza	ation), National			
	 requirements for medical dev Global Regulatory Lands 		CF (Furone) TC	GA (Austral	ia) and WHO			
	guidelines. ISO 13485: Quality management syst		· • •	ni (nusuu	iu), und WIIO			
Unit 2	Quality Management	Systems	and R	isk	Management	10		
	 Topics Covered: ISO 13485:2016: Quality management system requirements for medical devices. Risk Management in Medical Devices: ISO 14971 for risk assessment and management in medical devices. Good Manufacturing Practices (GMP): Regulations and guidelines for medical device manufacturing in India. Clinical Evaluation and Validation: Requirements for In Vitro Diagnostic (IVD) and Critical Care Devices. Post-market Surveillance and Vigilance: Regulatory requirements for market monitoring and reporting adverse events.							
Unit 3	Regulatory Approval	and	Conformi	ty	Assessment	10		
	Topics Covered: • Regulatory Approval Pro-			-	e registration.			
	importation, and market auth	orization.			-			
	clinical trials in medical dev	ice approval.	-					
	• Conformity Assessment : certification.	-			-			
	• Device Labeling and Pack labeling in India.	aging Compliance	: Regulatory requir	rements for	medical device			
	Inspection and Audits: Role of CDS	CO in inspections a	and audits.					
Unit 4	Compliance Challenges an Topics Covered:	d Future	of Medical	Device	Regulations	10		
	• Emerging Technologies in technologies on regulations.	Medical Devices	: Impact of AI, ro	obotics, and	digital health			
	 Challenges in Compliance: and evolving standards. 	Issues related to co	ounterfeit medical d	levices, imp	ort restrictions,			
	Global Harmonization of			nds toward	s international			
	 regulatory standards and the Ethical, Legal, and Social A 			evice approv	vals and patient			
	safety. Case Studies: Analyzing regulatory i	ssues and complian	ce failures in the me	edical device	e industry.			
	References							
2. " 3. " Regulator 4. " System Sa 5. " 6. "	MEDICAL DEVICE REGULATIONS: 0 Indian Medical Device Regulations" by A Practical Field Guide for ISO 1348 y Purposes" by Erik V. Myhrberg, Josep Safety Risk Management for Medical E fety Society (ISSS). Fundamentals of Medical Device Regul Medical Device Guidelines and Regulat han Thangaraju, Thamizharasan Sampa	CDSCO Guideline: 5:2016: Medical D bh Raciti, Brandon I Devices" by Europe: ations" by Gert Bos ions Handbook" by	s. <u>CDSCO - Medica</u> evices - Quality M J. Myhrberg. an Institute of Innov and Jocelyn Jennir	al Device Ru Ianagement vation and T ngs	Systems - Requ ec Elahi, Bijan,	International		

Course Code: BM311102BM	Subject Name: Critical Care and IVD Instrumentation	Credits (L-T-P-Cr) : 3-1-0-4
----------------------------	---	------------------------------

Pre-requisites: NIL

	Course Outcome											
S.No.		Outcomes							Description			
CO1	Students should able to understand and realize the need for critical care medical devices											
CO2	Should be able to apply the basic knowledge of engineering to know the application and utility of different recording and therapeutic devices in the medical sector.											
CO3		t should l devices		o desigi	and devel	op the proto	otype of critical care					
CO4					rging critic industry.	al care instr	ruments and their					
	Articulation Matrix: (CO-PO-PSO Mapping)											
СО	Р	Р	Р	Р	PSO	PSO2						

0	0 1	0 2	0 3	0 4	1	1502
CO1	2	1	-	1	3	3
CO2	3	3	2	2	3	3
CO3	3	3	3	3	3	3
CO4	2	3	2	1	3	3

Unit	Syllabus	1													Ho ur s
Unit 1	Principles an Electrocardio Cardiotocogra intravascular pacemaker, p defibrillator, 2	graph, Ve aphy, Me oximeter pacing sy	ectorcard ethod of , Cardia ystem an	liography, l monitoring to pacemak nalyzer, D	Phonocardi g fetal hea ter, implan C defibrill	iograp art rat ntable lator,	h, Biof e, moni pacem Implan	eedbac itoring akers, ntable	k Instr labor recent defibri	ument activit devel llator,	ation, y, Pu opme Type	Cardia lse ox nt in i s of i	imeter implan implan	and atable atable	10
Unit 2	Principles at Instrumentati ICU related of function meas analyzers, Re of the kidney machine, Hor care units and acquisition, E	on in CCU levices, b surement, spiratory s and arti ne (portal d advance	U: Anest ioanalyt , Spirom gas anal ificial ki ble) kidn ed moni	hesia mach ical and bio etry, Pneur yzer, Artifi dney, Dialy iey machine toring syste	ine, heart lu ocatalytical notachome cial ventila yzers, Princ es, The ston ems: Bedsi	lung m al instr eters, l ation,, ciple a ne dise ide M	achine, uments Measure Humid and men case pro onitors	; Mecl ement ifiers, 1 mbrand blem a , Patie	nanics of lung Nebuli es for l and sho nt mor	of resp volur zers, a nemod ck wa	oiratio ne, Pu nd As ialyze ve, Lit	n and Imona pirator rs, He hotrip	Pulmo ary fun- rs; Fun- modia tor. Sp	onary ction ction lyzer becial	10

Unit 3	Principle and instrumentation of semi and full auto biochemistry analyzer, and arterial blood gas analyzer: physical principle of analytes detection, block diagrams, components integration, electrical communication, optical filtering and signal conditioning, signal to noise ratio enhancement procedures. Principle and instrumentation of ELISA and PCR instruments: physic-chemical principles, blocks of fluidics actions, ELISA biochemical reaction kinematics, amplification techniques, PCR biochemistry, instrumentation, filtering techniques, amplification and signal conditioning techniques	10							
Unit 4	Unit 4: Principle and instrumentation of Blood Cell Count Analyzer and Mass Spectroscopy instruments: impedance techniques, optical techniques of blood cell counting, different assays, physical principles, implementing instrumentation dynamics; mass spectroscopy instruments instrumentation principles. Principle and instrumentation of Point of care devices: concepts, principles, architecture, sensor integration, sensitivity and specificity evaluation.	10							
	References								
	Biomedical Instrumentation, R S Khandpur Carr and Brown Introduction to Biomedical Equipment Technology, 4th Edition, Pearson								

	Course Code: BM311103BM					Subject Advanced processes dev	fabrication in medical		Credits (L-T-P-Cr): 3-1-0-4		
Pre-re	quisites	: NIL									
			Course	Outcon	ne						
S.No.	Outo	comes							PO Level	Description	
CO1	Studen devices	ts should s	l be able	to unde	cal						
CO2		ts should									
CO3							ysics and the techno veloping medical dev				
CO4		ts should igning d				e different l	bio fabrication proce	esses			
	Artio	culation	Matrix:	(CO-P	0-PSO Ma	apping)					
СО	P O 1	P O 2	P O 3	P O 4	PSO 1	PSO2					
CO1	2	1	-	1	3	3					
CO2	3	3	2	2	3	3					
CO3	3	3	3	3	3	3					
CO4	2	3	2	1	3	3					
Unit	5	Syllabus	1				Hou				

Unit 1	 Introduction to personalized medical devices Need for Medical Device Personalization: Introduction to Personalization of Medical devices, Advantages of personalized medical devices. In-silico testing of medical devices Introduction and importance to in-silico testing, Importance and application for in-silico testing. In-vivo and ex-vivo testing of medical devices Importance and comparison of the in-vivo and ex-vivo testing of medical devices, Static loading, Dynamic loading, Impact - Charpy and Izod tests, Thermogravimetric analysis, Differential Scanning Calorimetry, Thermomechanical analysis. 	10
Unit 2	 Additive manufacturing technology and rapid form copying for enhancing the development process of bio devices Introduction to Additive Manufacturing and Rapid Product Development: Design optimization, Rapid prototyping and manufacturing technologies, Di Matteo's process, Baese's process. Additive Manufacturing processes with impact on biomedical field: Overview of various additive manufacturing techniques, Materials used for additive manufacturing - powder, liquid, and solid, Selective laser sintering (SLS), Stereo-lithography, Digital light processing (DLP), Direct laser writing, Fused deposition modeling, Selective Laser Melting, Additive Manufacture of Conventional Biodevices for In Vitro or In Vivo Trials, Biomodels for implantable hard and soft tissue replacement. 	10
Unit 3	 Micro and nano manufacturing technologies for biodevices Introduction to Micro and Nano Manufacturing Technologies: Micromachining, Subtractive Micromachining, Chemical Micromachining, Manufacturing of microporous structure, Micro-replication technologies, thin film deposition technologies, Additive micro-manufacturing. Subtractive micromachining for biodevices: Introduction, Materials used, Process description, milling, drilling, lathing, micromachining using laser, electron beams, ion beams, X -rays. Photolithographic Approaches for 2D Biodevices: Introduction, Materials used in photolithography, Process description, classifications of various lithography processes, types of photoresists, Physical Vapor deposition, Chemical vapour deposition, solution deposition processes, applications of photolithography process in developing different biomedical devices. 	10
Unit 4	 Bio fabrication, and in silicon, Invitro and in-vivo testing of biodevices Introduction to manufacturing of biological systems Introduction, layer by layer deposition process, bioprinting technology, fabrication of biomedical scaffolds, Self assembled processes. Advancement and challenges linked to Biodevices Introduction, Challenges related to polymers, bio-polymers, ceramics, composites, biomimetic scaffolds, advancement and challenges linked with bio design tools, advancement and challenges related to biomanufacturing technologies.	10
	References	
	Handbook on Advanced Design and Manufacturing Technologies for Biomedical Devices, Andres Diaz Lantana https://doi.org/10.1007/978-1-4614-6789-2, ISBN: 978-1-4614-6788-5, Published: 08 May 2013, Springer New NY VLSI Technology, S.M. Sze, 1988, New York: McGraw-Hill, ISBN: 978-0070627352	

Cou	rse Code: BM311201BM	Subject Name: Foundation of human biology for medical devices	Credits (L-T-P-Cr): 3-1-0-								
Pre-requisi	Pre-requisites: NIL										
	Course Outcome										
S.No.	Outcomes		PO Level	Descrip tion							

CO1	Understand	iderstand the basics of cell and tissue structures in the human body.									
CO2	Understand t	he anatomy a	nd physiology	of different o	rgan systems						
CO3	Apply the kn	owledge of ba	asic physiology	y to detect pa	thological co	nditions.					
CO4	Evaluate how	v the brain con	ntrols different	organs and t	heir functions	5.					
CO5	Identify the b detected and		gy of the urina	ry system and	d how dialysi	is can be					
Articu	lation Matrix:	(CO-PO-PS	O Mapping)								
СО	PO1	PO2	PO3	PO4	PSO1	PSO2					
CO1	2	1	-	1	3	3					
CO2	3	3 3 2 2 3 3									
CO3	3	3 3 3 3 3 3									
CO4	2	3	2	1	3	3					
CO5	2	2 1 - 1 3 3									
Unit	Syllab	us						H ou rs			
Unit 1	Cell and its						, Arrangements of cell	10			
Unit 2	Anatomy of cycle, bloo types of blo Anatomy of	f heart and blo of pressure, Ro ood vessels ar f respiratory s	egulation of bl	aracteristics ood pressure, teristics. nism of respir	Cardiac outp	out and their	ogy of heart, cardiac regulation. Different Transport of oxygen	10			
Unit 3		ts types and fu	nctions, Glial tem, Spinal Co		ement of neu	rons, Central	nervous system,	10			
Unit 4			y stem and ana ture and functi			ncentrated an	d dilute, Dialysis	10			
	Re	ferences									
2. Princip		y and Physiol	ogy by Gerard	J Tortora and			Edition, John Wiley & So lical Publishers	ons, Inc			

	Course Code: <u>BM311202BM</u>	Subject Name: Physiological control system in medical device	Credits	(L-T-P-Cr): 3-1-0-4
Pre-rec	quisites: NIL			
	Course Outcome			
S.No.	Outcomes		PO Level	Description

CO1		s should natical m		and the	e fundamenta	l concepts o	of control systems and	
CO2	Student systems		be able	to dev	elop mathem	atical mode	els for various dynamic	
CO3					lyze the trans in medical de		eady-state behavior of	
CO4	Student	s should	be able	to asse	ess and ensure	e the stabili	ty of control systems.	
CO5			be able control s			nulation too	ols to model, simulate, and	
		Articu	lation N	Iatrix	: (CO-PO-P	SO Mappii	ng)	
СО	P O 1	P O 2	P O 3	P O 4	PSO1	PSO2		
CO1	3	1	-	1	3	3		
CO2	3	3	2	2	3	3		
CO3	3	3	3	3	3	3		
CO4	3	3	2	3	3	3		
CO5	3	3	2	3	3	3		
Unit	Syll	abus						Ho urs
Unit 1	Contro Contro Signal mecha medic	ol Syster ol Syster l flow gr unical sys al device	n: Termi ns, Feed aphs mo stems, el	nolog back a dels, N ectro-1 studies	nd feedforwa Aason's gain mechanical sy	tructure, D rd mechani formula, M ystems, Tra	Al Modeling ifference between Closed Loop and Open Loop isms, Block diagrams, Block diagram reductions, athematical modelling of: electrical systems, nsfer functions, Overview of control mechanisms in Output, Regulation of Glucose Insulin,	10
Unit 2	Time Transi order medic	response ent response system, l al device	of dyna onse, Ste Effect or es using	mical eady st 1 an ad PD, Pl	ate response, ditional zero	Measures of and an add trol system	ep response of standard first and second order systems, of performance of the standard first order and second itional pole, Steady state error, Analytical design for s like infusion pumps for drug delivery, ventilator	10
Unit 3	Closed standa plots -	l loop fr ird secon Cascade	equency d order s e lead co	respon system	, Bode Plot, I	nce specifi Polar Plot, 1 le lag comp	cation in frequency domain, Frequency response of Nyquist plots, Design of compensators using Bode pensation, Cascade lag-lead compensation, Software	10
Unit 4	Conce conce	pt, Guide	bility, B	r sketc	hing root loci		Routh stability criterion, Relative stability, Root locus stability criterion, Software tools for simulation	10
	•		Refer	ences				

- 1. Khoo M.C.K., 2018. PHYSIOLOGICAL CONTROL SYSTEMS Analysis, Simulation, and Estimation Second Edition, John Wiley & Sons, Inc., Hoboken, New Jersey.
- 2. Franklin G.F., Powell J.D., Emami-Naeini A., Feedback Control of Dynamic Systems, Pearson, Upper Saddle River, New Jersey, 5th edition, 2006.
- 3. Ogata K., Modern Control Engineering, Prentice-Hall of India Pvt Ltd., New Delhi, 3rd edition, 2000.
- 4. Golnaraghi F., Kuo B.C., Automatic Control Systems, Tenth Edition. India: McGraw-Hill Education, 2017.

	urse Code: <u>1311203BM</u>			ct Name: aging Systems		Credits (L	-T-P-Cr) : 3-1-0-4			
P	re-requisites: N	NIL								
	С	ourse Outcome								
S.No.		Outcomes					PO Level			
CO1		s shall understand pristic and bremss				iate it with				
CO2		Students shall explain different x-day based imaging techniques like fluoroscopy, mammography, CT								
CO3	Students shall understand the principle and acquisition modes/parameters of MRI, ultrasound imaging and nuclear imaging techniques									
CO4		s shall appraise coherence tomog		techniques like	endoscopy, n	nicroscopy,				
		Articulation	n Matrix: (CO	-PO-PSO Mapp	ing)					
со	PO1	PO2	PO3	PO4	PSO1	PSO2				
CO1	2	1	-	1	3	3				
CO2	3	3	2	2	3	3				
CO3	3	3	3	3	3	3				

CO4	2	3	2	1	3	3	
Unit	Syllab	us					Hours
Unit 1		atom, Characte of x-rays, radiog			radiation with	material,	10
Unit 2	MRI – phys	ics & instrumer	tation, Ultraso	ound Imaging –	physics & instr	rumentation	10
Unit 3	Radionuclid	aging Molecular le Production ar eletal Imaging,	ny,	10			
Unit 4		ng techniques – ory & Image pr	Tomography,	10			
		Referen	ces				
1.	Andreas Maier Springer Open		/incent Christle	in, Joachim Hor	negger, Medical	Imaging System	is, An Introductory Guide,
2.	Ramond M Re Sons, Inc.	illy, Medical Ima	ging for Health	n Professionals, 7	Cechnologies & C	Clinical Applica	tions, 2019 John Wiley &
3.	Ehsan Samei, I	Donal J Peck (201	9). Hendee's Pl	nysics of Medica	l Imaging, 5 th Edi	ition, Wiley Bla	ckwell

	Course Code: BM311204BM	Subject Name: Fluidics in Medical Devices: Diagnosis and IVD Principles	Credits (L-T-P-Cr) : 3-1-0-4			
Pre-ree	quisites: NIL					
	Course Outco	me				
S.No.	Outcomes	Outcomes				
CO1	Students shall be able employ i constructions.					
CO2	Students shall be able to design devices.	a and develop prototypes of IVD medical				

Unit 2	hybr Cell-	ridizatior -based cl apment, 2	n, other n hip for b	ucleic a	ues on chi cid applica ology: Rete optical trap	tion, immu					
Unit 1	intro Fabr poly	oduction, rication t mer chip	sample echnique os, metal	preconces of flui patterni	devices: Lid entration, s dic bed of ng, world to	eparation. IVD device o chip inter					
Unit		Syllab	us								
CO10	3	3	3	3	3	3					
CO9	3	3	2	2	3	3					
CO8	2	3	2	1	3	3					
CO7	3	3	3	3	3	3					
CO6	3	3	2	2	3	3					
CO5	2	1	-	1	3	3					
CO3	2	3	3	5 1	3	3					
CO2 CO3	3	3	2	2	3	3					
CO1	2	1	-	1	3	3					
СО	Р О 1	P O 2	P O 3	P O 4	PSO 1	PSO2					
	А	rticulati	ion Matı	rix: (CO)-PO-PSO	Mapping)					
CO10		nts shall chnology			op prototyp	e for cell-b					
CO9		nts shall /D devic		o detern	nine efficac	cy of differe					
CO8					orize differe /D devices						
CO7		Students shall be able to correlate the fluidics principles for IVD device development Students shall be able to categorize different fabrication techniques used for									
CO6	Stude	nts shall	be able t	o design	n prototype	of point of					
CO5					nine the tes by instrume						
CO4		nts shall PCR instr		o exami	ne the princ	ciple and ir					
CO3					the instruerial blood						

Unit 3	Immunoassay and Fluoroimmunoassay: design and optimization Basic concept of immunoassay, Competitive and non-competitive immunoassays, antibody occupancy principle of immunoassay, immunoassay optimization, Antibody 'microspot' immunoassay, Standardisation of immunoassays - principles and practice, Data Processing in immunoassay; Classification of immunoassay, Homogeneous and Heterogeneous immunoassay, Radiolabeled immunoassay, Assay choice and general description, Optimization strategies, Specificity and interference, Simultaneous measurement of two analytes, Enzyme multiplied immunoassay, Enzyme channelling immunoassay, Theory of time-resolved fluorescence, Choice of non-radioactive tracer system, Classification of homogeneous fluoroimmunoassay	10
Unit 4	Light scattering, Electrometric and multi-layer film assay techniques and chromatography Chemiluminescent and bioluminescent labels, Luminometers employing photomultiplier tubes, Solid state luminometers, Imaging photon detector and charge coupled device luminometers, Light scattering theory, Turbidimetry, Nephelometry, particle counting, Photon correlation spectroscopy (PCS), surface effect monitoring, Non enhanced light scattering assays, Particle enhanced immunoassays, Electrochemical processes, Methods for electrochemical immunoassay; Surface effect immunoassays, Fundamental principles of multi-layer film assay, Advantages and disadvantages of single and multilayer analytical element immunoassays, Technical principles of immunochromatography, Theoretical principles of immunochromatography, Complete disposable test system, Fundamental principles of immunoconcentration, Optimization strategies	10
	References	
Biomedic	ental and Applications of Microfluidics, Nguyen and Wereley. cal Instrumentation, R S Khandpur es and practice of immunoassay, Christopher P Price and David J Newman	

		urse Co 131120				Subject Electrical Patio	Safety of		Credits (L-T-P-Cr) : 3-1-0-4			
Pre-re	quisites:	NIL										
					Course O	utcome						
S.No.		Outcon	nes						PO Level	Description		
CO1			basic ph cluding		ms.							
CO2	Analyze the functionality, usage, and maintenance of various electrical safety equipment and procedures, including thermal, head, and eye protection equipment and insulated tools.							ty				
CO3							g electrical safety, g workplace safety.					
CO4	to mini		alities an		0		gies for electrical trac tion of human factors					
CO5	of powe	er systen	ns, flash	hazard o		, and measu	analysis, safe switchir rement techniques to					
		I	Articula	tion Ma	trix: (CO-]	PO-PSO M	(apping)					
СО	P O 1	P O 2	P O 3	Р О 4	PSO 1	PSO2						

CO1

-

CO2	3	3	2	2	3	3				
CO3	3	3	3	3	3	3				
CO4	2	3	2	1	3	3				
CO5	3	3	2	2	3	3				
Unit		Sylla	abus	1		<u> </u>		Ho ur s		
Unit 1	Electro protect Musco	Electrical hazards and its basic physics Electrical Hazards: - Introduction, Hazards analysis, Electrical Shock- micro and macro shock hazards, protection techniques to overcome these shocks, Affected body parts: - General, Skin, Nervous system, Muscular system, Heart, Pulmonary system. Basic Physics: - Electromagnetism, Electrical properties of materials, Physics considerations in electrical fault conditions.								
Unit 2	Electrical safety equipment and safety procedures and methods Electrical safety equipment: General inspection and testing requirements for electrical: safety equipment, Flash and thermal protection, Electromagnetic shielding, Head and eye protection, Rubber insulating equipment, Insulated tools, Voltage measuring instruments, Safety grounding equipment. Safety procedures and methods: The six-step safety method, Energized or De-energized, Safe switching of power systems, Responsibilities of employees, Voltage measurement techniques- three step measurement process, and Flash hazard calculations and approach distances.									
Unit 3	Regulatory and legal safety requirements and standards The Regulatory Bodies, Electrical equipment maintenance, American Society for Testing and Materials (ASTM), Occupational Safety and Health Administration (OSHA) standards, International Electrotechnical Commission (IEC) Standards in Medical Devices.									
Unit 4	Medical aspects of electrical trauma and human factors in electrical safety Introduction: Non-occupational electrical trauma, Fatality and Injury related cost, Electrical events: - electrocution and electrical fatalities, medical aspects, non-electrical effects in electrical events, Stabilization, Medical & surgical intervention, hospitalization experience, outpatient care.									
			Ref	erences						
					nn Cadick ei , J B Webst					

	Course Code: BM311206BM	Subject Name: Mathematical modeling in medical device perspective	Credits (L-T-P-Cr) : 3-1 0-4		
Pre-ree	quisites: NIL				
	Course Outcon	ıe			
S.No.	Outcomes		PO Level	Description	
CO1	Understand the fundamentals o device design	f CAD/CAM and imaging tools used in medica	1		
CO2	Apply mathematical and compu of biomedical systems	tational models for the simulation and analysis			

CO3		rform geometric and finite element modeling for the design of biomedical plants and devices.										
CO4		nent man cturing,				uding CNC	machining and additive					
CO5		te inforn 1 device			nd computa	ational tech	niques for optimized					
	Art	iculatio	n Matri	x: (CO-	PO-PSO M	(apping)						
СО	P O 1	P O 2	P O 3	P O 4	PSO 1	PSO2						
CO1	2	-	-	1	3	3						
CO2	3	2	-	2	3	3						
CO3	3	3	3	3	3	3						
CO4	3	2	2	-	3	3						
CO5	2	-	1	1	3	3						
Unit	Sy	llabus						Ho ur s				
Unit 1	Softv Imag i semi-a	vare, bas i ng tool s	ic princi s for pr o c image	iples and omoting process	l applicatio g design pe sing algori	ns. e rsonalizat i	esign: Introduction to CAD/CAM Hardware & on: Medical Image capturing systems, Introduction to D modeling and analysis to perform simulations and	10				
Unit 2	mode		D Stand				lelling System, Geometric Modeling: surface and solid System, Implementation of Finite Element Analysis in	10				
Unit 3	Hardv	vare Bas sion Ma	ics, CN	C tooling	g, Machine	Tools and	luction to Computer Numerical Control, CNC Control Systems. compatible materials, sterilization, and regulatory	10				
Unit 4							nents of Manufacturing, Group Technology and ning and Control	10				
			Ref	erences								
2.Groove 3.Miller, 4.Smid, I 5. Gilchr	er, M., & K. (2010 P. (2003) ist, A. (2	Zimmer)). Comp . CNC p	s, E. W. outationa rogramr iddlewai	J. R. (1 al biome ning har	chanics for idbook: a c	/CAM: con medicine. omprehensi	nputer-aided design and manufacturing. Pearson Educatio P. M. Nielsen (Ed.). New York: Springer. ve guide to practical CNC programming. Industrial Press platforms. In Industry 4.0: The Industrial Internet of Thin	Inc				

		ourse Co /I31140				Subject Quality proced medical e La	testing ure for quipment	Credits 3-2	(L-T-P-Cr) : 0-0-
Pre-re	quisites:	NIL							
	T	C	Course O	outcome)				
S.No.	(Outcome	es					PO Level	Description
CO1	Evalua	ate Mech	anical a	nd Elect	rical Integr	ity of Medi	cal Device Componen	ıts	
CO2	Analy	ze Perfo	rmance M	Metrics of	of Medical	Devices			
CO3	Design	n and Im	plement	Quality	Assurance	Testing Pro	ocedures		
CO4	Integra	ate Regu	latory St	andards	into Devic	e Quality C	ptimization		
	1	Articu	ilation N	Aatrix:	(CO-PO-P	SO Mappi	ng)		
СО	P O 1	P O 2	P O 3	Р О 4	PSO 1	PSO2			
CO1	2	1	-	1	3	3			
CO2	3	3	2	2	3	3	-		
CO3	3	3	3	3	3	3			
CO4	2	3	2	1	3	3			
Expe rime nts						Experin	ient Title		Ho ur s
E1	Quality	testing	for mech	anical p	oroperties o	f the device	components		3
E2	Quality	testing	of sensit	ivity tes	ting of the	output respo	onse of device compo	nents	3
E3	Quality	testing	of outpu	t resolut	ion of med	ical devices	(IVD and CCD)		3
E4	Quality	testing	of leakaş	ge currei	nt from mee	dical device	2S		3
E5	Quality	testing	of Line I	solation	Monitorin	g system of	medical devices		3
E6	Quality	testing	of specif	icity of	IVD device	es			3
E7	Quality	testing	of device	e design	optimizatio	on			3
			Dofo	rences					

Course Code: BM311402BM	Subject Name: Fabrication Methods of Medical Device Lab	Credits (L-T-P-Cr) : 0-0- 3-2
----------------------------	--	----------------------------------

Pre-re	quisites:	NIL								
				C	Course Out	come				
S.No.	(Outcome	es					PO Level	Descr	iption
CO1			le to und lical dev		the basics o	f fabricatio	n tools used for			
CO2			ply and abrication		solutions b	ased on stru	cturing different medical			
203			so analyz ng the m			problems a	nd challenges faced			
CO4					vene and h cation proce		different future advanced			
	Aı	ticulatio	on Matr	ix: (CO	-PO-PSO I	Mapping)	· · · ·			
СО	P O 1	P O 2	P O 3	Р О 4	PSO 1	PSO2				
CO1	2	1	-	1	3	3				
CO2	3	3	2	2	3	3				
CO3	3	3	3	3	3	3				
CO4	2	3	2	1	3	3				
Expe rime nts						Experin	ent Title			Ho ur s
E1	3D prir	ting tecl	hnique d	emonstr	ation - FDN	I and SLA				3
E2	Demon	stration	of polyn	neric ext	ruders for f	ilament syn	thesis			3
E3	Metal 3	BD printi	ng Demo	onstratic	on					3
E4	Lithog	aphy ba	sed fabri	cation o	f fluidic sys	stem for IV	D devices			3
E5	Laser e	ngraver	techniqu	e demoi	nstration for	medical d	evice parts fabrication			3
E6	Fabric	ating me	dical dev	vice part	ts using lase	er engraver				3
E7	Conduc	vive ink-	based pr	inting m	ethod demo	onstration f	or micro-electronic circuit p	rinting of medic	cal devices	3
E8	3 axis (CNC Mi	lling							
	1		ŀ	Reference	ces					

Course Code:Subject NaBM312101BMBasics of Bio and Bioelect	ensors Credits (L-T-P-Cr) : 3-1-
---	----------------------------------

Pre-requisites: NIL

		С	ourse O	utcome	•				
S.No.	0	utcom	ies					PO Level	Description
CO1	Students biosensor			know al	oout differe	nt biologica	al components for		
CO2	Students biosensor		able to	understa	and about d	ifferent trar	nsducers used on		
CO3	Students signal pro			understa	and and des	ign the ope	rational amplifiers for		
CO4	Students	will be	able to	get basi	c idea of fil	ter design a	and operations		
CO5	Students	will b	e able to	unders	tand and cro	eate sensor	workflow and processing		
		Articul	lation M	latrix: (CO-PO-PS	SO Mappin	ng)	-	
CO	р	Р	р	р	PSO	PSO2			

CO	Р О 1	P O 2	Р О 3	Р О 4	PSO 1	PSO2	
CO1	2	1	-	1	3	3	
CO2	3	3	2	2	3	3	
CO3	3	3	3	3	3	3	
CO4	2	3	2	1	3	3	
CO5	3	3	2	2	3	3	
						•	

Unit	Sylla	bus				I										Ho ur s
Unit 1	Biosensor ar parameters Biosensors- v Bio affinity- analyte. Typ	arious con based bios	mponents sensors &	s of biosen & Microorg	isors, Adva ganisms ba	antag ised [ges and biosen	l limita	ations,					ensors,		10
Unit 2	Sensor integ Various types Capacitive ty Principles an Voltammetry Biosensors.	of transd ype; Piez nd applica	ucers: Po oelectric ations -	tentiomete transduce Calorimete	ers, Strain g rs; Thermi ric, Optica	gaug istor al, P	ges, Br s, The otentio	ermoco ometry,	uple, , Amj	Resistiv peromet	ve Te ry, C	mpera hrono	ture d amper	letector ometry	;;;	10
Unit 3	Operational Operational a operations li and nonlinea	mplifiers: ke summe	Basic D er, adder,	ifferential	Amplifiers											10
Unit 4	Signal condi	tioning ci	rcuits fo	r biosenso	or applicat	tions	5:									10

	Signal acquisition components, Nyquist criteria, fundamentals of FFT, Design of Filters by passive and active components, Analog and digital filter design, A2D and D2A convertor
	References
	Biosensors and its instrumentation, Carr and Brown, 4th Edition, Pearson Electronic Circuits Part-II by U A Bakshi and A P Godse
4.	Carr and Brown- Introduction to Biomedical Equipment Technology, 4th Edition, Pearson Brian R Eggins - Biosensors an Introduction, First edition, John Wiley & Sons Publishers, 1996 Loic J Blum, Pierre R Coulet - Biosensors Principles and Applications, First edition, Marcel Dekker, Inc, 1991.

		ourse Co A31210				Subject Tissue En and D Intera	gineering levice	С	redits (L-T	'-P-Cr) : 3-1-0-4
Pre-re	quisites:	NIL								
			Course (Outcom	e					
S.No.		Outco	omes						PO Level	Description
CO1	Studen	ts shall t	be able to	evaluat	e cellular n	norphology	in degenerative tissue	s		
CO2	Studen tissues	ts shall b	be able to	classify	v different g	grades of de	generation in human			
CO3	Studen domair		be able to	develoj	p various ki	nds of scaf	fold at multi-scalar			
CO4					the prope velopment		fold based on the			
CO5	Studer	nts shall	be able to	o develo	op the desig	n of tissue	engineering bioreactor	r		
CO6		ts shall b ed biorea		model	transport pł	nenomena o	f culture fluid in			
CO7		ts shall b ted scaff		evaluat	te the intera	ction betwe	en host tissues and			
CO8					chensively a tation strate		regulatory issues relat	æd		
	Aı	rticulatio	on Matri	x: (CO	-PO-PSO N	Mapping)				
СО	P O 1	P O 2	P O 3	Р О 4	PSO 1	PSO2				
CO1	2	1	-	1	3	3				
CO2	3	3	2	2	3	3				
CO3	3	3	3	3	3	3				
CO4	2	3	2	1	3	3				
CO5	3	3	2	2	3	3				
	+		├				1			

CO6

CO7	2	3	2	1	3	3		
CO8	3	3	2	2	3	3		
Unit	S	yllabus	1		1	1		
Unit 1	Classi fabric evalua	fication ation te	of scaf chniques ort anal	folds, p s, classi	rinciples of fication of	characteri	e caffold fabrication techniques, modeling of scaffold zation techniques of scaffolds, its characterization, study, influence of scaffold topographical features on	
Unit 2	Fundar design constru	nentals c approacl ct, tubu	of tissue of h of bioroular cor	engineer eactors, istruct,	ing bioreac classification 3D solid	on of tissue tubular c	structs associated with bioreactors, bioreactor instrumentation, engineering bioreactors, bioreactors for coplanar tissue onstruct, 3D non-conventional structure construct, osensors integration bioreactors	
Unit 3	Erro prop form lined	r-toleran agation o ation in l ion cha	estimates membra nnel forr	microfluss for che anes: pro nation, 1	eckpoint ins otein-lined membrane p	ertion, cont ion channe permeabiliza	ol-path design and rollback-recovery mechanism, error- rol path synthesis, evaluation of protein assay; Ion pore -lipid bilayer coupling, analytical drug-induced lipid- tion by defects with possible non channel effects, nano ane permeabilization	
Unit 4	Micr host	oenviroi tissue -	nmental scaffold	evaluati interac	on of inter tion, charac	action betw terization o	nd its regulatory issues een scaffold and host tissues, boundary conditions of f this interaction, regulatory issues related to scaffold ors, and targeted degenerated morbidities	
			Referen	ices				
Molecula	of tissue , Cellula	e engined ar, and ti	Referen ering and ssue Eng	t ces d applica gineering	ations, Josej g. Bronzino	ph Bronzino , Peterson; 5		

	Course Code: BM312103BM	Subject Name: IoT and AI-ML in medical devices	Credits 0-4	(L-T-P-Cr) : 3-1-
Pre-re	quisites: NIL			
	Course Outcor	ne		
S.No.	Outcomes		PO Level	Description
CO1	Students will be able to understa ML and their applications in me	and the fundamental concepts of IoT, AI, and dical devices.		
CO2		T-enabled biosensors and bio-signal acquisit algorithms for healthcare monitoring.	ion	
CO3		and evaluate IoT architectures and AI models y, and limitations in healthcare applications.	s	
CO4		nd implement IoT-based intelligent medical regulatory considerations in healthcare		

		Ar	ticulatio	on Matr	ix: (CO-P(D-PSO Maj
СО	P O 1	P O 2	P O 3	P O 4	PSO 1	PSO2
CO1	2	1	-	1	3	3
CO2	3	3	2	2	3	3
CO3	3	3	3	3	3	3
CO4	2	3	2	1	3	3
Unit		Syllab	us			
Unit 1	and Fund linear as dis	medical amental regressi sease pro ing, nor	devices ls: Super ion, decis ediction,	, Featu vised, un sion tree diagnos	asics of Art are extrac asupervised es, and k-m stic tools, a feature ext	tion and and reinfo eans cluster and person
Unit 2	Backg Neural Neural generat	round: I Netwo I Netwo tion and	rks (CN orks (RN	tion to 1 Ns): Ap NS): A g in heal	neural netwo pplications pplications (thcare IoT, ons.	in image pr in time-se
Unit 3	IoT F Medi Cloue	^r undamo cal App d Comp	entals: Io dications outing: R	oT archit s: Remo leal-time	levices and tecture, con te monitori e data proc ive mainter	nponents, and ing, smart essing and
Unit 4	Biose and I Devic Analy Chall	nsors: T Processi ce Desig ytics: Pro lenges: S les: Deve	Types, wo ng: Tech n Princi ocessing Scalabilit	orking p nniques ples : Po bio-sign ty, inter	-signal acqu rinciples, a for collection ower mana hals using A operability, based medic	nd integrations and program of the second se
	·				Reference	ces
2. 3.	Cloud-Io The Inter Chen, Y. Germany	T Syster met of T W., & J	ns) by R. hings by ain, L. C	. J. Hem Samuel . Deep 1	oMT): Heal alatha (Edi Greengard earning in l nine learnin	tor), D. Aki (Author), M nealthcare.

Pre-ree	quisites:	NIL											
					Course	Outcome							
S.No.		Outcom	es					PO Level					
CO1		ts will be ane char		demons	trate biopot	tential and c	current in cell						
CO2	Student	ts will be	e able to	apply tr	ansport equ	ation in ior	channels						
CO3			e able to impulse			te action po	tential						
CO4	Student	tudent shall be able to evaluate impulse propagation											
CO5			be able to excitable		extracellula	ar fields and	electrical						
CO6			be able to junction			f cardiac tis	sue and						
		Articul	lation M	atrix:((COPO-PSC) Mapping)						
СО	P O 1	P O 2	P O 3	Р О 4	PSO 1	PSO2							
CO1	2	1	-	1	3	3	•						
CO2	3	3	2	2	3	3	•						
CO3	3	3	3	3	3	3							
CO4	2	3	2	1	3	3							
CO5	3	3	2	2	3	3							
CO6	3	3	3	3	3	3							
Unit		S	yllabus										
Unit 1	Curr mobi Gibb Doni	ent in so ility, tem os- nan Equa	olution, n aperature ation, pa	noles and variation rallel co	d amperes, ons, flux du nductance i	ionic comp e to diffusio model, char	on plus electric fie mel structure by e	For ion species, Nernst-Planck equation, eld, membrane structure, Nernst potential, electron microscopy, ion channels detection by s, Concept of passive and active transport.					
Unit 2	Voltage	e clamp	and patc	h clamp	o, Hodgkin-		mbrane model, H	odgkin-Huxley Conductance equations, GHK gation of signal in nerve fibers.					
Unit 3	Sphe input	erical cel t impeda	l stimula	tion, sti	mulation of t transient,	f fibers, axia	excitable tissues al current transien lus of an individu	t, field stimulus of an individual fiber, fiber al fiber, fiber input impedance, extracellular					
Unit 4	Inter trans	cellular	commun	ication,	cardiac cel	lular model		aphy, neuromuscular junction, Quantal nd magnesium, post junctional response to					
	1		Ref	erences									

	e Code: 2202BM			n, Fabricatior ices and Implar		C	L-T-P-Cr): 3-1-0-4						
Pre-re	quisites: NIL												
		Course Outc	ome										
S.No	0	utcomes				PO L	evel	De					
CO1		Understand medical device design principles, biomaterials, and human actors engineering											
CO2	Apply fabrication techniques like 3D printing, machining, and surface modifications												
CO3	Ensure regula standards.	atory complian	ce with CDSCC), BIS, ISO 1348	5, and ISO 1497	/1							
CO4	Evaluate dev validation	ice performand	ce through prec	linical testing, o	linical trials, an	nd							
CO5	Develop and quality assura	test prototype ance methods.	s using CAD r	nodelling, proto	typing tools, an	nd							
	Articu	lation Matrix:	(CO-PO-PSO M	(apping)									
СО	PO1	PO2	PO3	PO4	PSO1	PSO	2						
CO1	2	1	-	1	3	3							
CO2	3	3	2	2	3	3							

1													
CO3	3	3	3	3	3	3							
CO4	2	3	2	1	3	3							
CO5	2	3	2	1	3	3							
Unit	Syllabus						Hours						
Unit 1	Overview o healthcare. I solutions, a ergonomics	Introduction to Medical Device/Implant Design Derview of medical devices and implants: Definition, classification, and significance in healthcare. Design thinking and innovation: Identifying unmet clinical needs, brainstorming olutions, and conceptual design. Human Factors Engineering: Ensuring usability and orgonomics in device design. Biomaterials Selection: Criteria for choosing appropriate naterials considering biocompatibility and functionality.											
Unit 2	Mechanical From conce Utilizing CA manufacturi its advantag biocompatib Reviewing s Forming, M	Engineering Principles, Prototyping, and Fabrication Techniques Mechanical and electrical principles relevant to medical devices. Prototyping techniques: From conceptual sketches to functional prototypes. Computer-Aided Design (CAD): Utilizing CAD tools for precise modelling. Fabrication techniques: Additive manufacturing principles and applications: Understanding layer-by-layer fabrication and its advantages in creating complex geometries. Materials Used: Investigating biocompatible materials suitable for 3D printing implants and devices. Case Studies: Reviewing successful implementations of 3D-printed medical devices. Machining, Forming, Molding, and Assembly: Overview of conventional manufacturing processes used in medical device production											
Unit 3	Indian Regu of the Cent Understandi Lifecycle M	Regulatory Standards and Quality Assurance Indian Regulatory Framework: Overview of the Medical Devices Rules, 2017, and the role of the Central Drugs Standard Control Organization (CDSCO). International Standards: Understanding ISO 13485 and its implications for quality management systems. Product Lifecycle Management: From design and development to post-market surveillance. Risk Management: Implementing ISO 14971 for identifying and mitigating potential risks.											
Unit 4	Preclinical ' Trials: Desi Performance with Testing	Testing: Bench gning and con e Evaluation: E	nducting clinica nsuring devices lherence to stan	studies, and an al investigations meet intended p	nimal testing protoco s to assess safety an performance criteria. (Bureau of Indian Stan	nd efficacy. Compliance	10						

1. Denend, L. (2015). Biodesign. Cambridge University Press.

2. Baura, G. D. (2011). Medical device technologies: a systems-based overview using engineering standards. Academic Press.

3. Wiklund, M. E., Kendler, J., & Strochlic, A. Y. (2015). Usability testing of medical devices. CRC press.

4. Weinger, M. B., Wiklund, M. E., & Gardner-Bonneau, D. J. (Eds.). (2010). Handbook of human factors in medical device design. CRC Press.

5. Durfee, W., & Iaizzo, P. (2014). Medical device innovation handbook. Lulu. com.

Cour	rse Code: Bl	M312203	BM	Subject Name: Characterization of Medical Device			Credits (L-T-P-Cr) : 3-1-0-4						
Pre-requis	sites: NIL												
	C	Course Ou	tcome										
S.No.	Outcome	es					PO Level	Descriptio n					
CO1		Students shall understand the fundamentals of material properties											
CO2	Student	Students shall master various characterization techniques											
CO3	Studen	Students shall analyze and interpret characterization data											
CO4			able to id edical dev	entify and quices	uantify extra	actables and							
		Articulati	on Matrix	: (CO-PO-PS	O Mapping)								
СО	P O 1	P O 2	P O 3	PO4	PSO1	PSO2							
CO1	2	1	-	1	3	3	-						
CO2	3	3	2	2	3	3							
CO3	3	3	3	3	3	3							
CO4	2	3	2	1	3	3							
Unit	Syllab	us	l	1	1			Hour s					

Unit 1	Need for characterization of medical devices, Material Characterization Techniques – Light Microscopy – Optical principles, instrumentation, specimen preparation, imaging modes, confocal microscopy, X- Ray Diffraction methods – Generation of X-rays, absorption, Diffraction basics, wide angle x-ray diffraction and scattering, X – ray spectroscopy for elemental analysis,	10
Unit 2	Principle and instrumentation of Transmission Electron Microscopy, Scanning Electron microscopy, Scanning probe microscopy, Electron spectroscopy for surface analysis, vibrational spectroscopy for molecular analysis, Thermal Analysis	10
Unit 3	General principles of chemical compatibility assessments – extraction and leaching, types of extraction, examples of extraction sequence, recommended extractions, principle of extraction, Additional factors to consider	10
Unit 4	ISO 10993-18 (2012), ISO 10993-18 (2020), linking extraction conditions to medical devices categories, chemical testing of extracts, chemical characterization process for medical devices, compositional assessment, extraction able assessment, leachable assessment ISO 10993-17, - toxicological risk assessment,	10
	References	

2. <u>Dennis Jenke</u>, Extractables and Leachables: Characterization of Drug Products, Packaging, Manufacturing and Delivery Systems, and Medical Devices 1st Edition, Wiley, 2022

Course <u>BM312</u>	00400	Su Tecl		Credits (L-T-P-Cr) : 3-1- 0-4								
Pre-ree	Pre-requisites: NIL											
	Course Outcome											
S.No.	Outcomes						PO Level	Description				
CO1	Demonstrat sterilization		ciples of									
CO2	Assess the of factors such operational	ch as mic										
CO3	•	cal, filtratio	on, radiatior	nt sterilizati a) and the m sms.	-							
CO4	Understand guidelines sterilization	and stand										
	Art	iculation Ma	trix: (CO-PO	-PSO Mappir	ng)							
CO	PO1	PO2	PO3	PO4	PSO1	PSO2						

CO1	2	1	-	1	3	3	
CO2	3	3	2	2	3	3	
CO3	3	3	3	3	3	3	
CO4	2	3	2	1	3	3	
Unit	Syllabus	Į		1			Hours
Unit 1	dry heat, s used for s	steam, ethyl team steriliz	ene oxide, h ation, air qu	ydrogen per uality used f	ypes of sterili oxide, water or drying, Cle methods, mee	quality eaning of	10
Unit 2	inspectior technique	on and pack n, Packaging s, materials, s, Labelling es	ization	10			
Unit 3	sterilization use medic	on of reusat on (IUSS) sy cal devices, ' ination facil	f single- from a	10			
Unit 4	Dosimetry aspects of	Sterilization y and the rac radiation st on centers -	logical	10			
	Referen	ices					
					, International A or Health-care F		y Agency, Vienna, 2008

	Course Code: BM312205BM	Subject Name: Drug Delivery System	Credits (L-T-P	Credits (L-T-P-Cr) : 3-1-0-4				
Pre-re	quisites: NIL							
	Course Outcom	e						
S.No.	Outcomes		PO Level	Description				
C01	Understanding the fundar biomedical applications.	nentals of the drug delivery system and its ne	ed in					

CO2	Apply the fund	lamental aspect	ts of the dr	ug delivery sy	stem.							
CO3	Analyse the p	harmacokineti	cs behind a	a drug delivery	y system.							
CO4	-		-		drug delivery sys of vaccine delivery							
CO5	Summarize a c pharmaceutica	•	knowledge	e on drug deliv	very systems neede	ed for the						
	Artie	culation Mat	rix: (CO	-PO-PSO M	apping)		·					
СО	PO1	PO2	P O 3	P O 4	PSO1	PSO2						
CO1	3	1										
CO2	3	2	2	3	3	3						
CO3	2	3	3	3	3	3						
CO4	3	3 3 3 2 3 3										
CO5	2	2 3 3 3 3 3										
Unit	Syllabus								Hours			
Unit 1 Unit 2	Overview, do system, chen mechanism-M	Introduction to Drug Delivery System: Overview, dosage form-tablet, capsule, parenteral etc. classification of drug delivery system, chemically controlled system, diffusion-controlled system, controlled release mechanism-Membrane reservoir system, Matrix system, swelling controlled release system, biodegradable controlled release system.										
0	Introduction	s system, passa	netics and	pharmacodyn	amics, diffusive tr ibrane drug release			10				
Unit 3	Pharmacok		drug adm	inistration, dri	1g absorption, bioz	vailability, de	eterminants	10				
					stribution, drug eli							
Unit 4	Delivery mat mucosal drug kinetics, dru immunologic	g delivery sys g targeting a al preparations	r-based m tem, meas pproaches, : immunit	atrices; hydro suring in vitro biocompatib y, types, imm	gels- drug carrier diffusions, meas difty aspects of unological prepara taining toxoids F	suring control matrices Imr ations; bacteria	lled release nunity and al vaccines,	10				
	Referenc	es						<u> </u>				

Text Books:

- 1. Drug Delivery: Fundamentals and Applications, Second Edition. (2016). United States: CRC Press.
- 2. Drug Delivery: Principles and Applications. (2016). Germany: Wiley.

Reference Books:

- 1 Shargel, L., Yu, A. B. (2016). Applied Biopharmaceutics & Pharmacokinetics, Seventh Edition. Singapore: McGraw-Hill Education.
- 2. Basic Pharmacokinetics and Pharmacodynamics: An Integrated Textbook and Computer Simulations. (2016). United Kingdom: Wiley.

		ourse C M31240				Subject Biosens Bioelectr		Credits (L-	T-P-Cr) : 0-0-3-2					
Pre-re	quisites	: NIL												
		Course	Outcor	ne										
S.No.		0	outcome	5				PO Level	Description					
CO1		To make student understands the basic working of capacitive based biosensors												
CO2		To make student understands the basic working of chemical biosensors												
CO3	To ge desig		iar with	differe	ent types	of amplif	iers used in device							
CO4	To un	derstar	nd and o	design	active filt	ters using	ICs							
	I		Articula	ation Ma	atrix: (CO	-PO-PSO N	(apping)							
СО	P O 1	P O 2	P O 3	P O 4	PSO 1	PSO2								
CO1	2	1	-	1	3	3								
CO2	3	3	2	2	3	3								
CO3	3	3	3	3	3	3								
CO4	2	3	2	1	3	3								
Expe rime nts						Experin	nent Title		Ho ur s					
E 1	To des	ign and s	set up a s	stable m	ultivibrator	• of 1000 Hz	z frequency and 60% d	uty cycle using IC	555 3					
E2	Evalua	tion of t	ransfer c	haracteri	istics of a c	apacitive bi	osensor.		3					
E3	Evalua	tion of t	ransfer c	haracteri	istics of a c	hemical bio	osensor		3					
E4	Evalua	tion of t	ransfer c	haracteri	istics of a s	elf-assembl	y biosensor		3					
E5	Evalua	tion of t	ransfer c	haracteri	istics of a d	lifferential of	operational amplifier		3					
E6	Evalua	tion of t	ransfer c	haracteri	istics of an	instrumenta	ation amplifier		3					

E7	Evaluation of transfer characteristics of operation amplifier-based filters	3
E8	Evaluation of transfer characteristics of an integrated sensor circuit with DAQ system	3

	Course (BM3124			Tissue	Subject Name: Engineering and Device Interaction Lab	0	Credits (L-T	C-P-Cr) : 0-0-3-	2				
Pre-re	quisites: NIL												
	1	Course	Outcome	1									
S.No.		Outcomes					PO Level	Descriptio	n				
CO1	Able to evaluate	ble to evaluate physical characteristics of developed scaffolds											
CO2	Able to imple	ment cellular	integration	n with scaffo	olds								
CO3	Able to design	Able to design customized bioreactor for tissue engineering application											
CO4	Able to inter- conditions	Able to interpret cell membrane interaction with substrate in different bioreactor											
	Art	ticulation Ma	atrix: (CO	-PO-PSO N	Mapping)		·						
СО	PO1	PO1 PO2 PO3 P PSO1 PSO 2 0 4 0 2 2											
CO1	2	1	-	1	3	3	T'						
CO2	3	3	2	2	3	3							
CO3	3	3	3	3	3	3							
CO4	2	3	2	1	3	3							
Expe rime nts			1]	Experiment Title		1		Ho urs				
E 1	Development	of polyelectr	olyte comp	olex based so	caffold using electrospinning te	chnique			3				
E2	Scaffold phys	ical and mech	nanical cha	racterization	n				3				
E3	Cell adhesion	study on dev	eloped sca	ffold and its	mechano-transduction evaluation	ion using	AFM		3				
E4	Topography p	atterning by	self-assem	bly method	using lithography on synthesize	d scaffol	d		3				
E5	Evaluation of	cell adhesion	traction for	orces on patt	terned surface topographic scaf	fold			3				
E6	Evaluation of	therapeutic b	ioreactor i	nterface on	cell viability				3				
E7	Evaluation of	therapeutic b	ioreactor i	nterface on	cell membrane turgidity				3				

Course Code: BM313301BM	Subject Name: ECG and Bedside Monitor System	Credits (L-T-P-Cr) : 2-0- 2-3
Pre-requisites: NIL		

Expe rime nts	Experiment Title	Ho ur s
E1	ECG machine disassembling session	4
E2	Bedside monitor disassembling session	4
E3	Identification of testing points on ECG machine session	4
E4	Identification of testing points on Bedside monitor machine session	4
E5	Troubleshooting methodologies of ECG machine session	4
E6	Troubleshooting methodologies of bedside monitor session	4

Course Code:Subject Name:BM313302BMDefibrillator andHeart Lung Machine		Credits (L-T-P-Cr) 2-3	: 2-0-	
Pre-re	quisites: NIL			
Expe rime nts	Experiment Title		Ho ur s	
E1	Defibrillator machine disassembling session			4
E2	Heart lung machine disassembling session			4
E3	Identification of testing points on Defibrillator machine session			4
E4	Identification of testing points on Heart Lung Machine session			4
E5	Troubleshooting methodologies of Defibrillator machine session			4
E6	Troubleshooting methodologies of Heart lung machine session			4

Course Code: BM313303BM		Subject Name: Ventilator and Anesthesia Machine	Credits (L-T-P-Cr) 2-3	: 2-0-
Expe rime nts			Ho ur s	
E1	Ventilator machine disassembling session			4
E2	Anesthesia machine disassembling session			4
E3	Identification of testing points on Ventilator machine session			4
E4	Identification of testing points on Anesthesia Machine session			4
E5	Troubleshooting methodologies of Ventilator machine session			4
E6	Troubleshooting methodologies	of Anesthesia machine session		4

Course Code:	Subject Name:	Credits (L-T-P-Cr) : 2-0-
BM313304BM	Hemodialyzer and	2-3

		Endoscope		
Expe rime nts		Experiment Title		Ho ur s
E1	Hemodialyzer machine disassembling session		4	
E2	Endoscope machine disassembling session		4	
E3	Identification of testing points on Hemodialyzer machine session		4	
E4	Identification of testing points on Endoscope Machine session		4	
E5	Troubleshooting methodologies of Hemodialyzer machine session		4	
E6	Troubleshooting methodologies	of Endoscope machine session		4

	Course Code: BM313305BM	Subject Name: Single and Multi- Channel Semi auto biochemistry Analyzer	Credits (L-T-P-Cr) 2-3	: 2-0-
Expe rime nts	Experiment Title			Ho ur s
E 1	Single Channel Semi auto biochemistry Analyzer machine disassembling session			4
E2	Multi-Channel Semi auto biochemistry Analyzer machine disassembling session			4
E3	Identification of testing points on Single Channel Semi auto biochemistry Analyzer machine session			4
E4	Identification of testing points on Multi Channel Semi auto biochemistry Analyzer Machine session			4
E5	Troubleshooting methodologies of Single Channel Semi auto biochemistry Analyzer machine session			4
E6	Troubleshooting methodologies	of Multi-Channel Semi auto biochemistry A	Analyzer machine session	4

Course Code: BM313306BM		Subject Name: Full Auto Biochemistry Analyzer and Arterial Blood Gas Analyzer	Credits (L-T-P-Cr) : 2 2-3	2-0-
Pre-ree	quisites: NIL			
Expe rime nts	Experiment Title			Ho ur s
E1	Full Auto Biochemistry Analyzer machine disassembling session			4
E2	Arterial Blood Gas Analyzer machine disassembling session			4
E3	Identification of testing points on Full Auto Biochemistry Analyzer machine session		e session	4
E4	Identification of testing points on Arterial Blood Gas Analyzer Machine session		4	
E5	Troubleshooting methodologies	of Full Auto Biochemistry Analyzer machin	ne session	4

E6	Troubleshooting methodologies of Arterial Blood Gas Analyzer machine session
----	--

	Course Code: BM313307BM	Subject Name: ELISA and PCR Instrument	Credits (L-T-P-Cr) 2-3	: 2-0-
Experiment	t Experiment Title		Ho urs	
E1	ELISA machine disassembling session			4
E2	PCR machine disassembling session			4
E3	Identification of testing points on ELISA machine session			4
E4	Identification of testing points on PCR Machine session			4
E5	Troubleshooting methodologies of ELISA machine session			4
E6	Troubleshooting methodologi	Troubleshooting methodologies of PCR machine session		

	Course Code: BM313308BM	Subject Name: Blood Cell Count Analyzer and Mass Spectroscopy Instrument	Credits (L-T-P-Cr) 2-3	: 2-0-
Expe rime nts	ne		Ho ur s	
E1	Blood Cell Count Analyzer machine disassembling session			4
E2	Mass Spectroscopy machine disassembling session			4
E3	Identification of testing points on Blood Cell Count Analyzer machine session		4	
E4	Identification of testing points on Mass Spectroscopy Machine session		4	
E5	Troubleshooting methodologies of Blood Cell Count Analyzer machine session			4
E6	Troubleshooting methodologies	of Mass Spectroscopy machine session		4