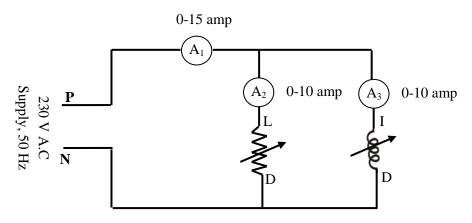
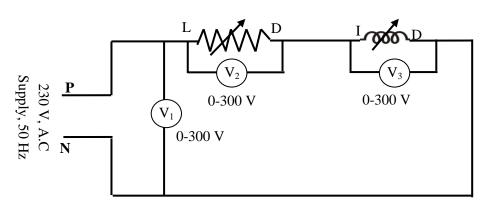
LIST OF EXPERIMENTS BASIC ELECTRICAL ENGINEERING

- 1. To verify KCL and KVL
- 2. To study the V-I characteristics of an incandescent lamp.
- 3. To measure single phase power by using three ammeter method.
- 4. To measure the single phase power by using three voltmeter method.
- 5. To perform short circuit test on a single phase transformer.
- 6. To perform open circuit test on a single phase transformer.
- 7. To measure three phase power by using two wattmeter method.
- 8. To verify Thevenin's theorem.
- 9. To verify Superposition theorem.


Aim: To verify Kirchhoff's Current Law (KCL) and Kirchhoff's Voltage Law (KVL)

Apparatus Required:


- 1. A.C. Ammeter- 3 nos. (0-10 amp)
- 2. A.C Voltmeter 3 nos. (0-300 V)
- 3. Rheostat
- 4. Inductive Load
- 5. Connecting wires

Circuit Diagram:

<u>KCL</u>

Theory:

Procedure:

KCL:

- 1. First measure the least count of all ammeters A_1 , A_2 , and A_3 and all voltmeters V_1 , V_2 and V_3 .
- 2. Connect the circuit as shown in the diagram.
- 3. Now, vary both the resistive and inductive load to obtain different readings of ammeters A_1 , A_2 and A_3 and voltmeters V_1 , V_2 and V_3 .
- 4. Repeat the same procedure for different observations.
- 5. Calculate percentage error.

KVL:

- 1. Connect the circuit as shown in the diagram.
- 2. Now, adjust both the rheostat and inductive load to obtain different values of then take V_1 , V_2 and V_3 .
- 3. Repeat the same procedure for different observations.
- 4. Calculate percentage error.

Observation Table:

KVL

Sl.No.	V_1 in (Volts)	V_2 in (Volts)	V_3 in (Volts)	$V_1' = \sqrt{V_2^2 + V_3^2}$	% Error
1					
2					
3					

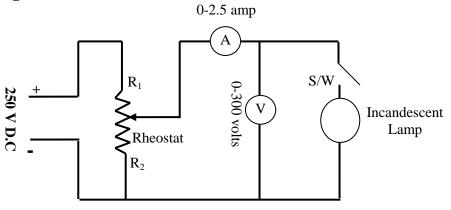
KCL

Sl.No.	A_1 in (Volts)	A_2 in (Volts)	A ₃ in (Volts)	$A_1' = \sqrt{A_2^2 + A_3^2}$	% Error
1					
2					
3					

Calculations:

$$\frac{\mathbf{KCL}}{\mathbf{\% \ Error}} = \left| \frac{A_1^{'} - A_1}{A_1} \right| \times 100 \qquad \qquad \mathbf{\% \ Error} = \left| \frac{\mathbf{KVL}}{V_1} \right| \times 100$$

Precautions:


- 1. Make the connections properly.
- 2. Note the readings of voltmeters and ammeters properly.
- 3. Remove insulations from the connecting wire so as the current will flow properly.
- 4. Avoid loose connections and don't touch wire with wet hand.

Aim of the Experiment: To study the V-I characteristics of an incandescent lamp.

Apparatus Required:

- 1. Incandescent lamp 1 no.- (200 Watt)
- 2. Rheostat 1 no.- (128 Ohm, 2.3 A)
- 3. D.C Voltmeter 1 nos. (0- 300 V)
- 4. D.C Ammeter 1 nos. (0-2.5 A)
- 5. Connecting wires
- 6. Supply: 250 V D.C

Circuit Diagram:

Theory:

Procedure:

- 1. Connect the circuit as shown in the diagram with the switch (S/W) is in off position. .
- 2. Switch on D.C supply, close the switch and vary the rheostat to obtain different voltage and current values. Note the voltage and corresponding current values. Record the Calculate percentage error.
- 3. Switch of supply then open the switch.

Observation Table:

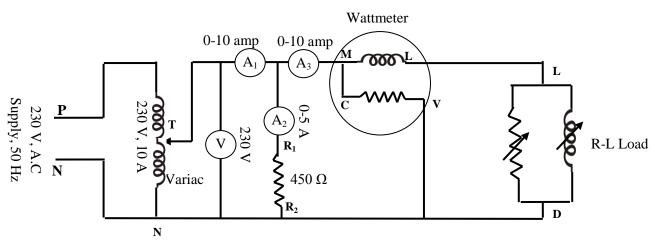
Sl.No.	V in (Volts)	<i>I</i> in (Amps)	R=V/I
1			
2			
3			

Plot the V-I characteristics of incandescent lamp.

Remarks: The characteristic is non-linear.

Precautions:

- 1. Make the connections properly.
- 2. Note the readings of voltmeters and ammeters properly.
- 3. Remove insulations from the connecting wire so as the current will flow properly.


- 1. Why V-I characteristics of incandescent lamp is nonlinear.
- 2. Is it satisfy ohm's law, and why?

Aim of the Experiment: To measure the single phase power in a single phase a.c. circuit by using three ammeters.

Apparatus Required:

- 1. A.C Wattmeter 1 nos. (0- 250 V, 0- amp)
- 2. A.C Ammeter 1 nos. (0-10 A)
- 3. A.C Ammeter 2 nos. (0-5 A)
- 4. A.C Voltmeter 1 nos. (0-300 V)
- 5. Variac: 230 V, 10 A, 50 Hz, 1-Phase
- 6. Resistor: 450 ohm
- 7. R-L Load Box
- 8. Connecting wires

Circuit Diagram

Theory:

Power consumed by load= $P=VI_3 \cos \emptyset$ (1)

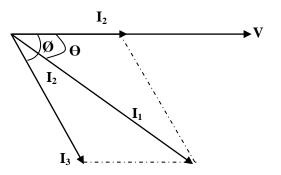
From the phasor diagram we can write,

$$I_1^2 = I_2^2 + I_3^2 + 2.I_2 \cdot I_3 \cos \emptyset$$
(2)

Power factor, $\cos Ø = (I_1^2 - I_2^2 - I_3^2) / 2.I_2.I_3$

 $I_2=V/R$ (Here R= 450 Ohm)

Now,


$$P_{calculated} = VI_3 \cos \emptyset = I_2 R I_3 \cos \emptyset$$

$$= \mathbf{R} \mathbf{I}_{2} \mathbf{I}_{3} \left((\mathbf{I}_{1}^{2} - \mathbf{I}_{2}^{2} - \mathbf{I}_{3}^{2}) / 2 \cdot \mathbf{I}_{2} \cdot \mathbf{I}_{3} \right) = (\mathbf{R}/2) * (\mathbf{I}_{1}^{2} - \mathbf{I}_{2}^{2} - \mathbf{I}_{3}^{2})$$
(4)

From the above equation it can observed that, the power and power factor in an a.c circuit can be measured by using 3-single phase ammeters, instead of a wattmeter.

Percentage Error = (P_{calculated}-Wattemter Reading) / Wattemter Reading

(3)

Phasor diagram of the above circuit.

Procedure:

- 1. Make the connections as per the circuit diagram.
- 2. Keep the variac at zero position before starting the experiment.
- 3. Switch on A.C supply.
- 4. By varying the variac set the voltmeter reading as supply voltage.
- 5. Vary the RL load to obtain different readings of ammeters, and wattmeter.
- 6. Repeat step 5 for different observations.
- 7. Set the variac at zero position and switch of supply.

Tabulation:

Sl.No.	A1 in (amp)	A2 in (amp)	A3 in (amp)	Pcalculated	Wattmeter Reading*M.F	cos Ø
1						
2						
3						
4						

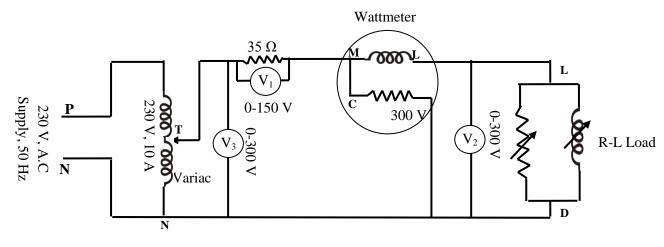
Calculation:

Calculate the value of P, $\cos \emptyset$.

Percentage Error = (P_{calculated}-Wattemter Reading) / Wattemter Reading

Precautions:

- 1. All connection should be proper and tight.
- 2. The zero setting of all the meters should be checked before connecting them in the circuit.
- 3. The current through ammeter should never be allowed to exceed the current rating of variac and load used.


- 1. In an a.c. circuit which power is more apparent or real and why?
- 2. What is the basic difference between an inductive load and purely inductive load?
- 3. The practical loads are purely inductive or inductive?
- 4. What is load factor?

Aim of the Experiment: To measure the single phase power in a single phase a.c. circuit by using three voltmeters.

Apparatus Required:

- 1. A.C Wattmeter 1 nos. (0- 300 V, 10- amp)
- 2. A.C Voltmeter 1 nos. (0-180 V)
- 3. A.C Voltmeter 1 nos. (0-300 V)
- 4. Variac: 230 V, 10 A, 50 Hz, 1-Phase
- 5. Resistor: 35Ω
- 6. R-L Load Box
- 7. Connecting wires

<u>Circuit Diagram</u>

Theory:

Power consumed by load= $P=V_2I \cos \emptyset$ (1)

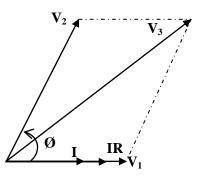
From the phasor diagram we can write,

$$V_3^2 = V_1^2 + V_2^2 + 2. V_1. V_2 \cos \emptyset$$
 (2)

Power factor, $\cos Ø = (V_3^2 - V_1^2 - V_2^2) / 2. V_1. V_2$

 $I=V_1/R$ (Here R= 35 Ohm)

Now,


$$P_{calculated} = V_2 I \cos \emptyset = V_2 (V_1/R) \ \cos \emptyset$$

$$= (V_1 V_2/R) ((V_3^2 - V_1^2 - V_2^2)/2. V_1. V_2) = (1/2R) * (V_3^2 - V_1^2 - V_2^2)$$
(4)

From the above equation it can observed that, the power and power factor in an a.c circuit can be measured by using 3-single phase voltmeters, instead of a wattmeter.

 $Percentage \ Error = (P_{calculated} \text{-}Wattemter \ Reading) \ / \ Wattemter \ Reading$

(3)

Phasor diagram of the above circuit.

Procedure:

- 1. Make the connections as per the circuit diagram.
- 2. Keep the variac at zero position before starting the experiment.
- 3. Switch on A.C supply.
- 4. By varying the variac set the voltmeter reading as supply voltage.
- 5. Vary the RL load to obtain different readings of voltmeters, and wattmeter.
- 6. Repeat step 5 for different observations.
- **7.** Set the variac at zero position and switch of supply.

Tabulation:

Sl.No.	V_1	V_2	V ₃	Pcalculated	Wattmeter	cos Ø
	in (volts)	in (volts)	in (volts)		Reading*M.F	
1						
2						
3						
4						

Calculation:

Calculate the value of P, $\cos \emptyset$.

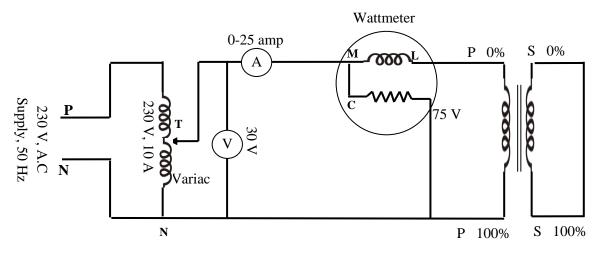
Percentage Error = $(P_{calculated}$ -Wattemter Reading) / Wattemter Reading

Precautions:

- 1. All connection should be proper and tight.
- 2. The zero setting of all the meters should be checked before connecting them in the circuit.
- 3. The current through ammeter should never be allowed to exceed the current rating of variac and load used.

- 1. Why current is taken as a reference?
- 2. How to reduce error in power calculation?

T.N. 1 A


Aim of the Experiment: To perform short circuit test on a single phase transformer to calculate:

1. The copper loss of the transformer.

Apparatus Required:

- 1. A.C Wattmeter 1 nos. (0-75 W)
- 2. A.C Voltmeter 1 nos. (0-300 V)
- 3. A.C ammeter 1 nos. (0-25 A)
- 4. Variac: 230 V, 10 A, 50 Hz, 1-Phase
- 5. Transformer (1phase, 50 Hz)
- 6. Connecting wires

Circuit Diagram

Theory:

$$R_{01} = \frac{W_{sc}}{I_{sc}^{2}}$$

$$Z_{01} = \frac{V_{sc}}{I_{sc}}$$

$$X_{01} = \sqrt{Z_{01}^{2} - R_{01}^{2}}$$

Procedure:

- 1. Make the connections as per the circuit diagram.
- 2. Make sure that the secondary side of transformer is shorted.
- 3. Keep the variac at zero position before switch on the supply.
- 4. Switch on A.C supply.
- 5. By varying the variac apply full load current to the transformer and note the reading of voltmeter, wattmeter and ammeter.
- 6. Keep the variac at zero position and switch of supply.

Tabulation:

Sl.No.	Voltmeter Reading (V)	Ammeter Reading (A)	Wattmeter Reading (W)
1			

Calculation:

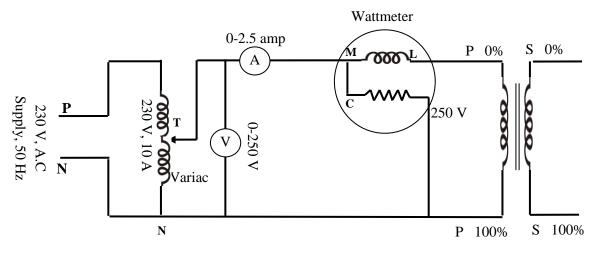
Calculate the multiplying factor (M.F) of the wattermeter. M.F= ((Rating of C.C)*(Rating of P.C)* $\cos\phi$)/(Wattmeter Ratingin) Copper loss = W_{sc} (in Watts) = Wattmeter Reading*M.F Short circuit current=Ammeter reading= I_{sc} Voltmeter Reading = V_{sc} Copper loss = Wattmeter Reading =W_{sc}

Calculate the values of R_{01} , X_{01} , Z_{01} .

Precautions:

- 1. All the connections should be tight and clean.
- 2. Special care should be taken while selecting the ranges of the meters for conducting short-circuit test.
- 3. While conducting the short-circuit test, the voltage applied should be initially set at zero, and then increase slowly. If a little higher voltage than the required voltage be applied (by mistake), there is a danger of transformer being damaged.

- 1. Why transformer rating is in KVA?
- 2. What type of losses occur in the primary and secondary windings of a transformer when it is in service?
- 3. How do copper losses vary with load on the transformer?
- 4. Which parameters of the equivalent circuit of a transformer can be found through short-circuit test ?


Aim of the Experiment: To perform open circuit test on a single phase transformer to calculate:

- 2. The equivalent circuit parameters with respect to primary side of the transformer.
- 3. The open circuit loss or core loss/iron loss of the transformer.

Apparatus Required:

- 1. A.C Wattmeter 1 nos. (0- 250 W)
- 2. A.C Voltmeter 1 nos. (0-250 V)
- 3. A.C ammeter 1 nos. (0-2.5 A)
- 4. Variac: 230 V, 10 A, 50 Hz, 1-Phase
- 5. Transformer (1phase, 50 Hz)
- 6. Connecting wires

Circuit Diagram

Theory:

 $W=V_1I_0\cos\varphi_0\qquad\qquad \cos\varphi_0=W/(V_1I_0)$

Procedure:

- 1. Make the connections as per the circuit diagram.
- 2. Make sure that the secondary side of transformer is open.
- 3. Keep the variac at zero position before switch on the supply.
- 4. Switch on A.C supply.
- 5. By varying the variac apply full supply voltage i.e. 230V to the primary of the transformer and note the reading of voltmeter, wattmeter and ammeter.
- 6. Keep the variac at zero position and switch of supply.

Tabulation:

Sl.No.	Voltmeter Reading (V)	Ammeter Reading (A)	Wattmeter Reading (W)
1			

Calculation:

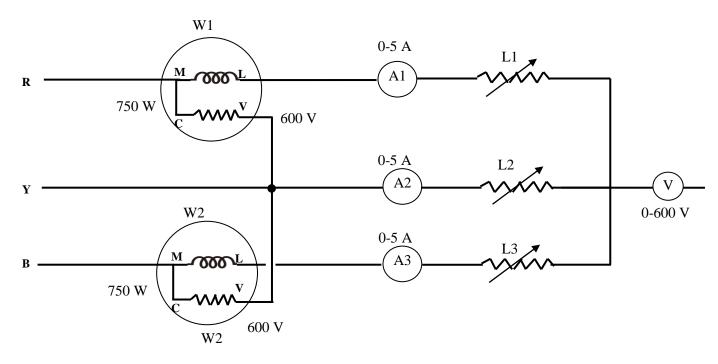
Calculate the multiplying factor (M.F) of the wattermeter. M.F= ((Rating of C.C)*(Rating of P.C)* $\cos\phi$)/(Wattmeter Ratingin) Iron loss = W (in Watts) = Wattmeter Reading*M.F No load current=Ammeter reading= I₀ Supply Voltage =Voltmeter Reading = V₁

Precautions:

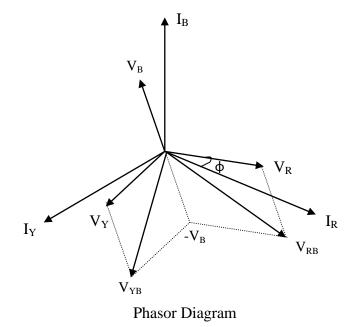
- 1. All the connections should be tight and clean.
- 2. Special care should be taken while selecting the ranges of the meters for conducting open-circuit test.

- 1. When a transformer is energised what types of losses occur in the magnetic frame of the transformer?
- 2. What information can be obtained from open circuit test of a transformer?
- 3. Why in open circuit test HV side is always kept open?
- 4. What is the power factor of a transformer under no load test situation?
- 5. What is the magnitude of no load current as compared to full load current?

Aim of the Experiment: To measure:


(i) three phase power and power factor in a balanced three phase circuit by using two single-phase wattmeter.

(ii) Calculate the three phase power for unbalance load condition.


Apparatus Required:

- 1. A.C Wattmeter 2 nos. (0- 600 V, 750 W)
- 2. A.C Voltmeter 1 nos. (0-600 V)
- 3. A.C ammeter 3 nos. (0-5 A)
- 4. Load Box

Circuit Diagram

Theory: For Balance Load Condition:

T.N. 3

$$\mathbf{P}_{\mathrm{M}} = W_1 + W_2 \tag{1}$$

$$P_{\rm C} = 3 V_{\rm ph} I_{\rm ph} \cos \phi \tag{2}$$

As it is a balance load condition, $V_a = V_b = V_c =$ Phase Voltage $I_a = I_b = I_c =$ Phase Current

For resistive load $\cos \phi = 1$. So, P_C = 3 V _{ph} I _{ph}

$$W_{1} = V_{RB} I_{R} \cos(30^{0} - \phi) = \sqrt{3} V_{ph} I_{ph} \cos(30^{0} - \phi)$$
(3)

$$W_2 = V_{\rm YB} I_{\rm Y} \cos(30^0 + \phi) = \sqrt{3} V_{\rm ph} I_{\rm ph} \cos(30^0 + \phi) \tag{4}$$

$$W_1 + W_2 = \sqrt{3} V_{\rm ph} I_{\rm ph} [2\cos 30^0 \cos \phi] = 3 V_{\rm ph} I_{\rm ph} \cos \phi = \sqrt{3} V_{\rm L} I_{\rm L} \cos \phi$$
(5)

The above equation shows that the sum of the two wattmeter readings gives the total power consumed in the three-phase balanced system. We can also calculate the load power factor angle from the measurement of W_1 and W_2 .

$$\frac{W_1}{W_2} = \frac{\cos(30^0 - \phi)}{\cos(30^0 + \phi)}$$

$$\frac{W_1 - W_2}{W_1 + W_2} = \frac{\cos(30^0 - \phi) - \cos(30^0 + \phi)}{\cos(30^0 - \phi) + \cos(30^0 + \phi)} = \frac{2\sin 30^0 \sin \phi}{2\cos 30^0 \cos \phi} = \tan 30^0 \tan \phi$$
$$\tan \phi = \sqrt{3} \left[\frac{W_1 - W_2}{W_1 + W_2}\right]$$
(7)

For Unbalance Load Condition:

$$P_{M} = W_{1} + W_{2}$$

$$P_{C} = V_{a} I_{a} + V_{b} I_{b} + V_{c} I_{c} , \% \text{ Error} = \frac{P_{C} - P_{M}}{P_{C}} \times 100$$

Procedure:

- 1. Make the connections as per the circuit diagram.
- 2. Switch on A.C supply.
- 3. For balanced load condition measured the values of wattmeters, ammeters and voltmeter.
- 4. Repeat the same process for unbalance load condition.
- 5. Switch off all the loads and supply.

Tabulation:

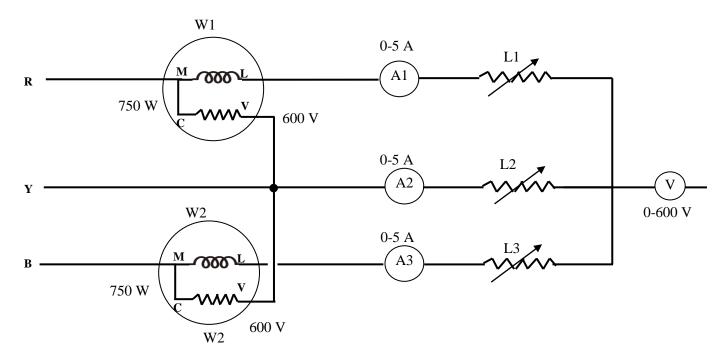
Sl.	Condition	I _R	I _Y	I _B	V _R	V _Y	V _B	M.F.	W_1	W_2
No.										
1	Balanced									
	Load									
2	Unbalanced									
	Load									

Calculation:

Calculate P_M, Pc and % Error.

Precautions:

- 1. All the connections should be tight and clean.
- 2. The readings in ammeters should not exceed the current ratings of wattmeters.
- 3. With negative deflection in wattmeter the connection should be reversed.


- 1. Is it possible to measure reactive power in a three phase circuit using this method?
- 2. What would be the readings of two wattmeters in this experiment, if the load is purely resistive?
- 3. What would be the readings of two wattmeters in this experiment, if the load is purely inductive?
- 4. If one of the wattmeter reads zero, what is the power factor of the load?

Aim of the Experiment: To measure three phase power using two wattmeter method during balanced and unbalance load condition.

Apparatus Required:

- 1. A.C Wattmeter 2 nos. (0- 600 V, 750 W)
- 2. A.C Voltmeter 1 nos. (0-600 V)
- 3. A.C ammeter 3 nos. (0-5 A)
- 4. Load Box

<u>Circuit Diagram</u>

Theory:

$$\mathbf{P}_{\mathrm{M}} = W_1 + W_2 \tag{1}$$

$$P_{C} = V_{R} I_{R} + V_{Y} I_{Y} + V_{B} I_{B}$$
(2)

For balance load condition,

 $V_{R} = V_{Y} = V_{B} =$ Phase Voltage $I_{R} = I_{Y} = I_{B} =$ Phase Current

% Error =
$$\frac{P_{\rm C} - P_{\rm M}}{P_{\rm C}} \times 100$$

 $\tan \phi = \sqrt{3} \left[\frac{W_1 - W_2}{W_1 + W_2} \right]$ (3)

$$\cos \phi = ?$$

Procedure:

- 1. Make the connections as per the circuit diagram.
- 2. Switch on A.C supply.

- 3. For balanced load condition measured the values of wattmeters, ammeters and voltmeter.
- 4. Repeat the same process for unbalance load condition.
- 5. Switch off all the loads and supply.

Tabulation:

Sl. No	Condition	I _R	I _Y	I _B	V _R	V _Y	V _B	M.F.	\mathbf{W}_1	W_2	$\cos\phi$
1	Balanced Load										
2	Unbalanced Load										

Calculation:

Calculate P_M, Pc and % Error.

Precautions:

- 1. All the connections should be tight and clean.
- 2. The readings in ammeters should not exceed the current ratings of wattmeters.
- 3. With negative deflection in wattmeter the connection should be reversed.

- 1. Is it possible to measure reactive power in a three phase circuit using this method?
- 2. What would be the readings of two wattmeters in this experiment, if the load is purely resistive?
- 3. What would be the readings of two wattmeters in this experiment, if the load is purely inductive?
- 4. If one of the wattmeter reads zero, what is the power factor of the load?